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Regression discontinuity (RD) designs enable researchers to estimate causal effects using

observational data. These causal effects are identified at the point of discontinuity that

distinguishes those observations that do or do not receive the treatment. One challenge in

applyingRD in practice is that datamay be sparse in the immediate vicinity of the discontinuity.

Expanding the analysis to observations outside this immediate vicinity may improve the

statistical precision with which treatment effects are estimated, but including more distant

observations also increases the risk of bias. Model specification is another source of

uncertainty; as the bandwidth around the cutoff point expands, linear approximations may

break down, requiring more flexible functional forms. Using data from a large randomized

experiment conducted by Gerber, Green, and Larimer (2008), this study attempts to recover

an experimental benchmark using RD and assesses the uncertainty introduced by various

aspects of model and bandwidth selection. More generally, we demonstrate how

experimental benchmarks can be used to gauge and improve the reliability of RD analyses.
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Regressiondiscontinuity (RD) is a researchmethod that attempts toestimate thecausal effect
of an intervention by examining comparable observations in which the treatment is or is not
administered (Thistlethwaite and Campbell 1960). When assignment to a treatment is
determinedby thevalueof a continuousobservedvariable, identification is achievedbycom-
paring observations that lie on either side of a cutoff point that separates the treated from the
untreated (Imbens and Lemieux 2008: 616). Recent years have seen a dramatic increase in
the number and range ofRDstudies in social science. For example, Lee (2008) demonstrated
the electoral advantage enjoyed by incumbents using an RD analysis that compared the vote
share of the party that narrowly won the preceding election to the vote share of the party that
narrowly lost (for other electoral applications, see Butler and Butler 2006; Hainmueller
and Kern 2008). Pettersson-Lidbom (2004) estimated the budgetary effects of increasing
the number of municipal representatives by comparing towns that acquire additional repre-
sentatives based on a population-based formula. In these applications, a rigidly applied rule
divides a continuous variable—vote share, population—allowing researchers to compare
outcomes among what are otherwise similar observations on either side of the cutoff.

The attraction of RD analysis is its capacity to extract unbiased estimates of causal
effects from nonexperimental data. In domains where random assignment of treatments
is impractical, RD offers a way to approximate random assignment in the vicinity of
the discontinuity. As Cook and Wong (2009) stress, not all discontinuities are suitable
for this kind of analysis; in some cases, actors may be aware of a discontinuity (e.g.,
a change in income tax brackets) and adjust their behavior accordingly. In many applica-
tions, the targeting criteria involve variables whose distributions are too coarse to allow for
a convincing comparison of treated and untreated observations. Nevertheless, it appears
that the number of potentially fruitful applications of RD is quite large, and social scientists
have only begun to tap the supply of applications in which decision makers partition a con-
tinuous variable and administer a treatment to those on one side of the partition.

However, even in instances where RD designs seem apt, there remains the question of
how best to analyze data associated with a RD. Researchers have considerable discretion
when it comes to two aspects of data analysis: the size of the window surrounding the point
of discontinuity and the statistical model used to estimate the treatment effect. The nar-
rower the window, the less chance that omitted variables will bias the estimated treatment
effect. On the other hand, the narrower the window, the smaller the number of available
observations. In the limiting case, the exact point of discontinuity is a set of measure zero:
inferences will be unbiased but, without data, the analyst confronts infinite sampling var-
iability. Widening the window expands the number of observations, but doing so also intro-
duces the risk of bias due to omitted determinants of the outcome that are correlated with
the treatment. In an attempt to reduce the threat of bias, researchers often control for the
variables along which the discontinuity occurs, but the adequacy of this approach depends
on the particular application. Taken together, these two specification issues present the
researcher with a tradeoff: use a narrow window and put up with sampling variability
(and potentially uninformative results) or expand the window and risk introducing bias.

How to resolve this conundrum will doubtless depend on the application at hand, but
researchers may also benefit from studies that compare estimates generated by RD to
results from an experimental benchmark. Although this exercise, pioneered by LaLonde
(1986), has become widespread as a means of analyzing the adequacy of a variety of sta-
tistical methods used to analyze observational data, it has rarely been used to assess and
guide RD analysis (Buddelmeyer and Skoufias 2003; Black, Galdo, and Smith 2005). The
one exception of which we are aware in political science is Nickerson (2007), which com-
pares an experimental evaluation of an age-targeted voter mobilization campaign to a RD
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analysis based on a sharp age cutoff. Our paper builds on this work using a large data set
that enables us to simulate discontinuities and evaluate alternative estimation approaches.

In the application presented here, a campaign consultant constructed a target list of
voters for a direct mail campaign.1 The target voters were randomly divided into control
and treatment groups, enabling Gerber, Green, and Larimer (2008) to estimate experimen-
tally the effects of four different types of mailings on voter turnout. The question for the
current paper is whether one can recover the estimated treatment effects from this exper-
iment by means of a RD analysis using a simulated discontinuity. Like many applications
of RD, ours presents the problem that data in the immediate vicinity of the discontinuity are
sparse, and so the analyst must decide how much to widen the window around the discon-
tinuity and how to model the comparison between groups that do or do not receive the
treatment. After providing a brief overview of RD analysis, we estimate an experimental
benchmark and attempt to recover it using various RD estimation approaches. Although
some RD estimation procedures perform well, even the most promising approaches some-
times produce misleading estimates and SEs. We conclude by discussing the practical im-
plications of uncertainty about how best to specify RD models and by suggesting avenues
for further empirical investigation using experimental benchmarks.

1 Causal Inference from Sharp RD Designs

RD designs are typically explicated in terms of a potential outcomes framework that
defines a treatment effect as the difference between two quantities: the outcome when ob-
servation i is exposed to the treatment, Yi(1), and the outcome when the observation is not
exposed to the treatment, Yi(0) (Hahn, Todd, and Van der Klaauw 2001).

Because we cannot simultaneously observe voters in their treated and untreated states,
we must rely on average responses of observations that are randomly or near-randomly
assigned to treatment and control conditions. Let Ti denote the treatment received by each
observation, with Ti 5 1 if the unit received the treatment and Ti 5 0 otherwise. The ob-
served outcomes are therefore given by:

Yi 5 ð12TiÞYið0Þ1TiYið1Þ5
�
Yið0Þ if Ti 5 0

Yið1Þ if Ti 5 1
: ð1Þ

In other words, we observe treated outcomes for observations receiving the treatment
and untreated outcomes for observations not receiving the treatment.

The challenge then is to construct a comparison between treated and untreated units that
recovers the treatment effect without being confounded by preexisting differences that are
correlated with receipt of the treatment. One way is through random assignment of the
treatment (Rubin 1974). RD provides another way. Let c represent a cutoff point such that
Ti5 1 when some covariate X is greater than or equal to c and Ti 5 0 when X is less than c.
This situation is known as a ‘‘sharp’’ RD because Ti is a deterministic function of X, the so-
called forcing variable. In this case, the average treatment effect at X 5 c is

s5E½Yð1Þ2Yð0ÞjX5 c�5E½Yð1ÞjX5 c�2E½Yð0ÞjX5 c�:

Imbens and Lemieux (2008: 618) show that under fairly weak continuity assumptions,
the average treatment effect in the vicinity of the cutoff point can be estimated by

1Using the criteria discussed below, 344,081 target voters were selected from a list of 6,710,669 registered voters
from the state of Michigan. Here, we focus on a subset of the target sample, single-voter households who were
assigned to either the control group or one of the experimental treatment groups.
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comparing average outcomes on either side of the discontinuity. Continuity, although
a weak requirement in principle, may be an invalid assumption in practice. It may be that
decision makers are aware of the discontinuity threshold and manipulate outcomes to offset
its influence. As noted earlier, discontinuous changes in marginal tax rates may not be
suitable for analysis because taxpayers may behave strategically to fall just short of
the cutoff point. Few election campaign interventions suffer from this problem, as cam-
paign targeting is typically done using eligibility criteria of which voters are unaware.

2 Estimating an Experimental Benchmark: An Example Involving Direct Mail and
Voter Mobilization

The benchmark used here comes from a study conducted by Gerber, Green, and Larimer
(2008), which gauged the effects of various direct mailings on voter turnout among
Michigan residents prior to the August 2006 primary election. This section provides a brief
overview of that experiment.

2.1 Setting

The August 2006 primary was a statewide election with a wide range of offices and pro-
posals on the ballot, most of which were limited to counties, cities, and local districts. There
were no important contested statewide Democratic primary elections and just one compet-
itive primary contest for U.S. Senate andU.S. House, both on the Republican side.Michigan
voters are allowed to vote in either the Democratic primary or the Republican primary, but
not both. The voter’s choice of party is secret under Michigan law, and there is no party
registration. For those intending to vote as Democrats, there was little reason to vote in the
2006 primary apart from the occasional nonpartisan judicial race or contested local office.
Voter turnout in the August 2006 primary was 1,282,203, or 17.7% of registered voters.

2.2 Treatments

Each household in the treatment group received one of four mailings. The appendix to
Gerber, Green, and Larimer (2008) shows examples of each type. Priming voters to think
about their civic duty is common to all the treatment mailings. All four treatments carry the
message ‘‘DO YOUR CIVIC DUTY—VOTE!’’ The first type of mailing (‘‘Civic Duty’’)
provides a baseline for comparison with the other treatments because it does little besides
emphasize civic duty. Households receiving this type of mailing were told, ‘‘Remember
your rights and responsibilities as a citizen. Remember to vote.’’ The second mailing adds
to this civic duty baseline a mild form of social pressure, in this case, observation by re-
searchers. Households receiving the ‘‘Hawthorne effect’’ mailing were told ‘‘YOU ARE
BEING STUDIED!’’ and informed that their voting behavior would be examined bymeans
of public records. The degree of social pressure in this mailingwas, by design, limited by the
promise that the researchers would neither contact the subject nor disclose whether the sub-
ject voted. The ‘‘Self’’ mailing exerts more social pressure by informing recipients that who
votes is public information and listing the recent voting record of each registered voter in the
household. The word ‘‘Voted’’ appears by names of registered voters in the household who
actually voted in the 2004 primary election and the 2004 general election, and a blank space
appears if they did not vote. The mailing informed voters that after the primary election,
‘‘we intend to mail an updated chart’’ filling in whether the recipient voted in the August
2006 primary. The Self condition thus combines the external monitoring of the Hawthorne
condition with actual disclosure of voting records. The fourth mailing, ‘‘Neighbors,’’ exerts
still more social pressure by listing not only the household’s voting records but also the
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voting records of those living nearby. Like the Self mailing, the Neighborsmailing informed
the recipient that ‘‘we intend to mail an updated chart’’ after the primary, showing whether
members of the household voted in the primary andwho among their neighbors had actually
voted in the primary. The implication is that members of the household would know their
neighbors’ voting records and their neighbors would know theirs.

As Gerber, Green, and Larimer (2008) demonstrate, the treatment effects grow larger as
social pressure increases. The most dramatic effect is associated with the Neighbors treat-
ment. Although less dramatic effects are also susceptible to RD analysis, the advantage of
working with a powerful experimental intervention is that it lends itself to more instructive
graphical presentation. For this reason, the analysis below focuses on the comparison
between the control group and the Neighbors group.

2.3 Selection of the Treatment Group

The targeting criteria used in this mailing campaign were developed by a political con-
sultant, Mark Grebner, a longtime veteran of political campaigns involving direct mail.
Like many political consultants, he uses targeting criteria based on a combination of ad-
dress information readily available from the Qualified Voter File (QVF) and a set of pro-
prietary indices of partisanship and voting behavior developed by his consulting firm.
Grebner’s targeting objective was to direct mailings to those who were thought to
be especially responsive to them. Mailings were therefore sent to voters whose
expected probability of voting was deemed to be moderate. Those believed to be strong
Democrats were excluded on the grounds that they had little chance of voting in an election
that was meaningful mainly to Republicans. Absentee voters were excluded because they
were believed to vote early, before the receipt of these mailings. Sparsely populated streets
were excluded because the Neighbors treatment requires the voting histories of several
neighbors. Apartment addresses were excluded because apartment numbers are sometimes
unreliable, and it is hard to be certain which voters belong to the same household.

The criteria used to restrict the target sample were therefore as follows.2 Voters
were targeted if (1) their forecasted probability of voting was between 30% and 80%, (2)
their forecasted probability of voting for a Democrat in a general election was less than
59%, (3) their forecasted probability of voting by absentee ballot was less than 60%, (4)
they lived on a street segment in which there were at least 10 voter households, and (5)
the ratio of apartment addresses to voter households on a given street segment was less than
0.09. If a voter failed to meet any of these criteria, he or she was excluded from the target
sample. For purposes of this analysis, we restrict our attention to one-voter households
because doing so allows us to sidestep complications that are irrelevant to the assessment
of RD analysis.3 Note that Grebner’s targeting criteria are broadly illustrative of the kind of
eligibility rules that are used in campaigns. They lend themselves to a RD analysis, albeit
an unusually complex one given the number and intricacy of the selection criteria (see

2This summary corrects some minor errors in the description given in Gerber, Green, and Larimer (2008). Note
that Grebner also limited the targeted mail to those who had voted in the November 2004 election on the grounds
that, given the very high turnout among registered voters in that election, anyone failing to do so was probably no
longer living at the address listed in the QVF.
3The two complications are as follows. First, all individuals at a given address were assigned as a cluster to one of
the treatment groups. Including multivoter households would require correcting the SEs for clustered random
assignment. Second, Grebner included individuals in the target sample if they either met all the selection criteria
or at least one of their housemates did. Thus, somemultivoter households contain individuals on opposite sides of
the cutoff thresholds. Neither complication arises if we restrict attention to single-voter households in the QVF.
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Green et al. 2008). Here, we use the experiment in a different manner, simulating much
simpler targeting criteria that classify voters along a single dimension.

3 Benchmark Estimates

Using voter turnout data from public records, we can estimate the average treatment effect
of the Neighbors mailing for the entire sample. The control group in our study (N 5

24,964) voted at a rate of 32.64%. By comparison, turnout among those assigned to
the Neighbors mailing (N5 5074) is 42.29%, which implies a 9.65 percentage-point treat-
ment effect. Due to the large sample sizes in each experimental group, these treatment
effects may be estimated with a high degree of precision using a linear probability model,
with a robust SE of 0.75 percentage points. Note that this is the average treatment effect for
the entire sample, not the treatment effect at a particular discontinuity.

There are many ways to simulate a discontinuity using these data; following Nickerson
(2007), we consider a hypothetical targeting rule based on age. For example, the exper-
imental data used here could be divided according to an age threshold such that those
younger than 55 years receive a mailing; those 55 years and older do not.4 This faux dis-
continuity is readily simulated in this case by restricting the data set to 2642 observations in
the treatment group who are younger than 55 years and 12,075 observations in the control
group who are 55 years and older.

Unlike an actual mail campaign, our experiment gives us an empirical glimpse at the
counterfactuals: Sampling error aside, we see how those 55 years and older would have be-
haved if they had received mail, and we see how those younger than 55 years would have
behaved if they had not receivedmail. In essence, our experimental mail campaign contains
everything that we would observe as part of an actual campaign plus the counterfactuals.

Figure 1 shows in red the observed data on each side of the discontinuity. The data have
been aggregated by year of age, and the group average is plotted using circles whose size is
proportional to the number of observations. The blue circles depict the unobserved coun-
terfactual outcomes. To the left of the age cutoff, the blue circles indicate how those
eligible for mail would have behaved had they not received it; to the right of the cutoff,
the blue circles show how those ineligible for mail would have behaved had they received
it. The analyst of an actual RD would only observe the data depicted in red.

The benchmark regression model attempts to estimate the effect of the Neighbors treat-
ment at the point of the discontinuity. To do so, we add Age as a covariate and subtract 55
from it so that Age5 0 at the discontinuity. Age is interacted with the Neighbors treatment
so that the ‘‘main effect’’ of Neighbors (b1) represents the effect of this mailing when
Age 5 0 (i.e., at the point of discontinuity). Anticipating the flexible polynomials used
in the RD models below, we also include higher powers of Age and interactions between
them and Neighbors. The regression model with a fourth-order polynomial in Age that
allows for different curves on each side of the discontinuity, for example, looks as follows:

Yi 5 b01b1Neighborsi1b2Agei1b3AgeiNeighborsi1b4Age2i

1b5Age2i Neighborsi1b6Age3i 1b7Age3iNeighborsi

1b8Age4i 1b9Age4iNeighborsi1ui:

ð2Þ

4This particular age cutoff is arbitrary, and one could use these data to investigate a range of hypothetical cutoffs as
discussed below. In the statistical analyses that follow, age is measured in days, and the cutoff is based on a voter’s
age on Election Day. We exclude observations for which the QVF does not list a full birth date.

405Testing the Accuracy of RD Analysis



The fitted lines in Fig. 1 illustrate how this model works. The vertical distance at the
point of discontinuity is the estimate of b1. Other model specifications with fewer poly-
nomials are subsets of equation (2). For example, a linear specification simply constrains
b4 5 b5 5 b6 5 b7 5 b8 5 b9 5 0.

Column 1d of Table 1 shows that the benchmark is 10.0 percentage points with a robust
SE of 1.1 percentage points. Note that this estimated local effect is quite similar to the
estimated global effect of 9.7 with a robust SE of 0.8 reported in column 1a. Specifications
with different order polynomials produce similar results. For example, including up to third
order polynomials and their interactions produces a benchmark estimate of 10.3 with a ro-
bust SE of 1.0. Choosing among these estimates has no effect on the conclusions below,
and so we will use the estimates generated by the fourth-order specification depicted in
equation (2). We now assess the degree to which RD estimates recover this experimental
benchmark. Bearing in mind the fact that RD analysts will not ordinarily have knowledge
of an experimental benchmark to guide their modeling, we pay special attention to the
kinds of model and bandwidth selection criteria that researchers may use when choosing
among alternative RD specifications.

4 Recovering the Benchmark: RD Estimation Using Polynomials

Our first attempt to recover the experimental benchmark uses the entire sample (the max-
imum bandwidth) and varies the specification of the polynomial regression model. The RD
model treats Age as the forcing variable. Again, Age is centered at 55. An RD model with
a fourth-order polynomial in Age that allows for different curves on each side of the dis-
continuity is the same as equation (2). The parameter of interest is b1, which represents the
effect of the Neighbors treatment when Age 5 0 (i.e., at the point of discontinuity). The
difference between the benchmark regression and the RD analysis is the set of observations
on which the model is estimated: The benchmark analysis uses all the data, whereas the
RD analysis is restricted to treatment observations to the left of the cutoff and control
observations to the right of the cutoff.
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Fig. 1 Illustration of RD using age as a forcing variable. The red circles depict average voting rates
among observed voters, grouped by year of age, which has been rescaled so that zero (age 55) is the
point of discontinuity. The blue circles depict average voting rates among counterfactual voters. The
red circles to the left of the age cutoff (where age equals 0) represent the treatment group, which
received the experimental mailings. The red circles to the right of the cutoff represent the control
group, which received no experimental mailings. The size of the circles is proportional to the number
of observations in each age group.
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Table 1 Comparison between RD estimates and experimental benchmarks, full sample

Full Sample

Benchmark RD

(1a) (1b) (1c) (1d) (2a) (2b) (2c) (2d)

Neighbors
treatment
(robust SE)

9.65**
(0.75)

10.43**
(0.97)

10.26**
(0.99)

10.0**
(1.11)

1.77
(1.89)

7.36**
(2.70)

10.42**
(3.51)

10.33**
(4.28)

Age 0.13**
(0.023)

0.039**
(0.036)

0.45**
(0.0026)

20.17**
(0.042)

0.66**
(0.14)

1.26**
(0.31)

1.79**
(0.55)

Age2 20.0054**
(0.0012)

0.0016
(0.0014)

20.0058**
(0.0026)

20.025**
(0.0040)

20.074**
(0.019)

20.12**
(0.055)

Age3 20.00054**
(0.000059)

20.00072**
(0.000083)

0.00088**
(0.00033)

0.0029
(0.0020)

Age4 0.0000097**
(0.0000028)

20.000026
(0.000024)

Age � Neighbors 20.051
(0.057)

20.0055
(0.09)

20.032
(0.11)

0.032
(0.15)

20.48
(0.47)

20.71
(1.06)

21.75
(1.99)

Age2 � Neighbors 20.0031
(0.0028)

20.0014
(0.0035)

0.0016
(0.0065)

0.038**
(0.017)

0.13
(0.088)

0.083
(0.277)

Age3 � Neighbors 20.000084
(0.00015)

20.000016
(0.00021)

0.00016
(0.0020)

20.0072
(0.014)

Age4 � Neighbors 20.0000040
(0.0000071)

20.000066
(0.00024)

Observations 30,038 30,038 30,038 30,038 14,717 14,717 14,717 14,717
Squared error 67.73 6.97 0.18 0.11
MSE 71.31 14.26 12.50 18.43

Note. Dependent variable is voter turnout. Age has been centered so that it is zero at the point of discontinuity (55 years). Table entries are least squares regression estimates and robust

SEs. Squared error is the squared difference between the estimates in columns 2a–d and the benchmark estimate of 10.0. MSE is mean squared error, defined as squared error plus the

square of the SE.

*p < .10, **p < .05 (two-tailed test).
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Results are reported in Table 1, columns 2a–d. As intuition suggests, the SE associated
with the estimated treatment effect increases as additional polynomial terms are added to
the specification. For this reason, the researcher who is unaware of the experimental bench-
mark may be attracted to the linear specification in column 2a. However, the linear spec-
ification produces an estimate (b5 1.8, robust SE 5 1.9) that is more than four SEs away
from the benchmark. The accuracy of the RD estimator improves as a quadratic term is
added (b 5 7.4, SE 5 2.7). The squared difference between the estimate and the bench-
mark declines from 67.7 to 7.0 as a quadratic term and interaction are added, suggesting
that the relationship between age and vote is nonlinear on either side of the cutoff.
Accuracy continues to improve as higher order terms are introduced, with the cubic
(b 5 10.4, SE 5 3.5) and quartic (b 5 10.3, SE 5 4.3) RD specifications recovering
the benchmark estimates almost exactly. The downside of the cubic and quartic specifi-
cation is the sharp increase in SEs. By the mean squared error criterion (bias squared plus
variance), the cubic specification offers the best balance of bias and precision.

The choice among specifications may contribute to the overall level of uncertainty as-
sociated with RD estimates, and so it is instructive to consider the sampling distribution
that results from specification searches. One commonly used rule of thumb is to start with
a high-order polynomial and successively pare down the specification depending on
whether the highest order terms (and associated interactions) are statistically significant
at the p < .05 level. The search stops when the highest order term or interaction is sig-
nificant. In Table 1, this procedure would settle on the cubic specification, as none of
the quartic terms is significant. It turns out that there is little sampling variability in this
aspect of the specification search: applying this model selection procedure to 1000 boot-
strap samples generates estimates with a SD of 3.9 percentage points, as opposed to the
nominal SE of 3.5 from the cubic regression.

In addition to choosing among alternative polynomial specifications, researchers must
decide how narrowly to restrict the sample on either side of the cutoff point. Narrowing the
window around the cutoff lowers the risk of bias but reduces the number of observations.
Narrowing the window presumably makes the regression more plausibly linear in the vi-
cinity of the discontinuity, which reduces the need for higher order polynomials and at-
tendant problems of collinearity. Assessing the robustness of results is an important aspect
of RD analysis, as Imbens and Lemieux (2008: 633) warn:

Irrespective of the manner in which the bandwidth is chosen, one should always investigate the

sensitivity of the inferences to this choice, for example, by including results for bandwidths twice

(or four times) and half (or a quarter of) the size of the originally chosen bandwidth. Obviously,

such bandwidth choices affect both estimates and standard errors, but if the results are critically

dependent on a particular bandwidth choice, they are clearly less credible than if they are robust to

such variation in bandwidths.

To illustrate the consequences of reducing bandwidth (defined as the distance between
the cutoff and the lowest or highest age that is included in the analysis), we consider three
illustrative windows in Table 2: ages falling within 5 years of the cutoff, within 10 years of
the cutoff, and within 20 years of the cutoff. The experimental benchmark, the estimated
treatment effect at age 55, remains the same; the question is how well the RD models
perform as the window size changes. Restricting the sample to ages 50–60 causes the
N to drop by about 75%, and the estimates have larger SEs. The narrow window does
not appear to lead to especially accurate estimates. More troubling perhaps is the fact that
the statistical significance of the higher order terms does not provide reliable guidance as to
the most accurate specification. For example, third-order terms are significant, yet the es-
timated effect of the mailing based on this RD specification is 19.4 with a SE of 8.4.
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Table 2 RD estimates, restricted samples

Restricted samples

5 years 10 years 20 years

(1a) (1b) (1c) (1d) (2a) (2b) (2c) (2d) (3a) (3b) (3c) (3d)

Neighbors
treatment
(robust SE)

7.64*
(4.18)

3.90
(6.38)

19.41**
(8.40)

29.58**
(10.57)

9.92**
(2.98)

7.21
(4.44)

8.10
(5.97)

5.52
(7.53)

5.63**
(2.18)

9.79**
(3.24)

10.52**
(4.28)

6.60
(5.33)

Age 0.53
(0.56)

4.66**
(2.27)

6.09
(5.74)

20.68*
(11.52)

0.82**
(0.23)

0.78
(0.87)

2.45
(2.14)

6.50
(4.23)

0.26**
(0.090)

1.26**
(0.034)

1.71**
(0.81)

0.17
(1.57)

Age2 20.81*
(0.44)

21.52
(2.67)

214.58
(9.38)

0.0046
(0.086)

20.43
(0.52)

22.28
(0.05)

20.053**
(0.018)

20.11
(0.10)

0.25
(0.34)

Age3 0.094
(0.35)

4.13
(2.81)

0.029
(0.035)

0.322
(0.27)

0.0021
(0.0034)

20.027
(0.026)

Age4 20.40
(0.28)

20.014
(0.014)

0.00076
(0.00068)

Age �
Neighbors

21.0
(1.43)

213.74**
(5.85)

20.89
(14.37)

32.24
(28.96)

20.46
(0.51)

21.97
(2.02)

24.17
(5.20)

217.30*
(10.35)

20.29
(0.21)

20.93
(0.78)

21.37
(1.91)

22.36
(3.80)

Age2 �
Neighbors

20.89
(1.11)

17.87**
(6.63)

54.12**
(23.36)

20.16
(0.20)

0.14
(1.21)

22.05
(4.16)

0.072*
(0.40)

0.13
(0.23)

20.82
(0.80)

Age3 �
Neighbors

2.31**
(0.86)

5.45
(6.96)

20.038
(0.079)

20.96
(0.62)

20.0020
(0.0079)

20.020
(0.062)

Age4 �
Neighbors

1.12
(0.68)

20.016
(0.031)

20.0020
(0.0016)

Observations 3813 3813 3813 3813 6905 6905 6905 6905 11,243 11,243 11,243 11,243
Squared error 5.57 37.21 88.55 383.38 0.0064 7.78 3.61 20.07 19.10 0.044 0.27 11.56
MSE 23.04 77.91 159.11 495.10 8.89 27.50 39.25 76.77 23.85 10.54 18.59 39.97

Note. Dependent variable is voter turnout. Age has been centered so that it is zero at the point of discontinuity (55 years). Table entries are least squares regression estimates and robust

SEs. Squared error is the squared difference between the estimates in columns 2a–d and the benchmark estimate of 10.0. MSE is mean squared error, defined as squared error plus the

square of the SE.

*p < .10, **p < .05 (two-tailed test).
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Widening the window to ages 45–65 leads to improved estimates and smaller SEs. Us-
ing roughly half of the available data, the linear specification produces an estimate of 9.9,
which is very close to the experimental benchmark, with a SE of 3.0. None of the higher
order terms is significant, which means that a conventional specification search would pro-
duce an accurate result in this instance. Widening the window still further to admit ages
35–75 also produces adequate results. The model with quadratic terms produces accurate
estimates (b5 9.8, SE5 3.2) and is the one selected by a specification search guided by the
significance of higher order terms.

These results call attention to some of the tradeoffs that confront the RD analyst: wid-
ening the window around the cutoff point increases sample size and admits observations
that have the potential to assist in the estimation of curves on either side of the discon-
tinuity. On the other hand, the higher order polynomials that make these curves flexible also
increase collinearity among the right-hand-side variables and thus increase the SEs sur-
rounding the estimated treatment effect. Narrowing the window around the discontinuity
facilitates a locally linear regression, but the precision of this regression depends on
whether sufficient observations lie near the discontinuity. The next section considers efforts
to automate the selection of the window around the cutoff.

5 RD Estimation Using Local Regression

An alternative to polynomial regression is to fit local linear regression models (Loader
1999) in the vicinity of the cutoff. The specification is a simplification of the model in
equation (2), this time excluding higher order polynomials and their interactions:

Yi 5 b01b1Neighborsi1b2Agei1b3AgeiNeighborsi1ui: ð3Þ

Again, the parameter of interest is b1, the effect of the treatment evaluated at the point of
discontinuity (where Age 5 0).

This modeling approach requires the analyst to make two important decisions concern-
ing bandwidth and weights. In an effort to automate the process of bandwidth selection,
researchers have developed two algorithms designed to balance the tradeoff between sam-
pling variability and bias. Ludwig and Miller (2007) and Imbens and Lemieux (2008) have
proposed a ‘‘leave one out’’ cross-validation procedure aimed specifically at estimating the
regression function at the cutoff. To see howwell a local linear regression with bandwidth h
fits the data, they run a local linear regression for each observation i with i left out of the
sample and then use the resulting coefficient estimates to predict the value of Yi at Xi. Mim-
icking the fact that RD estimates are based on regression estimates at a boundary, the re-
gressions are estimated using only observations to the left of i (for i below the cutoff) or the
right of i (for i above the cutoff). Repeating this exerciseN times produces a set of predicted
values of Yi that can be compared with the actual values of Yi. The final ‘‘cross-validated’’
bandwidth is then picked by choosing the value of h that minimizes the mean square of the
difference between the predicted and the actual values of Yi.

An alternative approach uses asymptotic theory to derive the value of h. Imbens and
Kalyanaraman (2009) derive the optimal bandwidth for the RD setting—optimal in the
sense that it minimizes mean squared error—and propose an empirical procedure for band-
width selection. The specific algorithm is complex, but the essential idea is to increase the
size of h as the variance in outcomes at the cutoff increases, as the density of the forcing
variable at the cutoff diminishes, and as the shape of the curves on opposite sides of the
cutoff becomes increasingly symmetrical.
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In our application, the optimal algorithm selects a bandwidth of 11.7 years. Bootstrap-
ping the sample and recalculating the optimal bandwidth 10,000 times suggests that the
value of h has a SE of 2.5 years, which is reassuringly small. The bandwidth calculation
using cross-validation is less robust and involves another decision on the part of the re-
searcher, namely, what proportion of the sample in the tails of the forcing variable to
exclude prior to the search for h. Imbens and Lemieux (2008: 629) suggest discarding
between 50% and 95% of the data before searching for the best-fitting value of h. When
we exclude the 50% of the sample lying farthest from the age cutoff, the bandwidth is
estimated to be 5.3 years (see Fig. 2). When we exclude 90% of the sample, the bandwidth
falls to 2.5 years.

The second decision involves the use of weights. Intuitively, it makes sense to weight
more heavily those observations falling closest to the cutoff. The relative size of the
weights near and far from the threshold could follow any arbitrary monotonic function,
but we follow Imbens and Kalyanaraman (2009) in using a triangular kernel for which
weights decrease linearly from 1 (at the cutoff) to 0 (at h). The literature suggests that
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Fig. 2 Bandwidth selection using cross-validation, by sample size restriction. Cross-validation is
used to select a bandwidth for local linear regressions. The upper graph shows the cross-validation
function when the sample is restricted to the 10% of observations lying closest to the age cutoff. The
vertical line denotes the minimum at h 5 2.47 years. The lower graph shows the cross-validation
function when the sample is restricted to the 50% of observations closest to the cutoff. The vertical
line denotes the minimum at h 5 5.34 years.
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the choice of kernel (e.g., rectangular, Gaussian, or Epanechnikov) makes little difference
in practice (Lee and Lemieux 2009: 39).

Table 3 presents the results of local linear regressions using either the cross-validated or
the asymptotically optimal bandwidth sizes h. The local linear regression using the asymp-
totically optimal bandwidth of 11.7 years on each side of the discontinuity generates an
estimate of 9.4 percentage points with a robust SE of 3.0. As Fig. 3 illustrates, the local
linear estimate using an optimal bandwidth comes very close to the benchmark because the
selected bandwidth is nearly ideal. By contrast, the local linear regression using the cross-
validation bandwidth of 2.5 years produces an estimate of 14.8 with a robust SE of 6.7;
using a bandwidth of 5.3 generates an estimate of 6.4 with a robust SE of 4.5. In terms of
mean squared error, the estimate using the optimal bandwidth is comparable or superior to
the best polynomial regression models presented in Table 1, and the procedure used to
generate these estimates is more clearly defined and leaves fewer decisions to the re-
searcher. The two estimates generated using cross-validated bandwidths are relatively
inaccurate, and the procedure that generates the bandwidths is less well defined.

6 Discussion

In principle, RD analysis offers social scientists the opportunity to draw sound causal infer-
ences from nonexperimental data. Although RD methods were proposed decades ago,
applications of this method remained relatively rare until the 1990s. Lee and Lemieux’s
(2009) recent review of RD applications charts the explosive growth of this method over
the past decade. This growth is expected to continue in political science, where potential
applications abound due to the rigid manner in which institutional rules allocate represen-
tation and government resources. The growth should be particularly vigorous in the study
of campaign communications, where targeting criteria divide individuals and precincts in
arbitrary ways (Gerber, Kessler, and Meredith 2009).

As RD analysis gains prominence, it becomes increasingly important to evaluate its
performance through benchmarking exercises. Unlike simulated data, experimental data
involve actual outcomes and realistic forcing variables. Although each application has
its own idiosyncrasies, the process of recovering benchmarks from real data calls attention
to the role of discretion in RD analysis. The analyst does not know ex ante which RD
model specification is appropriate, and the results may be sensitive to choice of functional
form. Bandwidth selection is another source of uncertainty. Indeed, one reason to prefer
narrow bandwidths is that they tend to facilitate local linear regression. However, narrow
bandwidths may generate estimates that are too uncertain to be useful, and one could imag-
ine the dilemma that an analyst would face given the marked variation in results as band-
widths expand.

Our results illustrate some of these dilemmas.5 Selecting the estimate with the smallest
estimated SE was sometimes a poor guide to minimizing the mean squared error with
which the benchmark was estimated. Specification searches based on statistical signifi-
cance of the higher order terms in a polynomial specification performed adequately in
some instances and not others. Maximizing the statistical significance of the estimate

5For the sake of brevity, the analysis presented above did not consider two other important sources of analyst
discretion: whether to include covariates and whether to heed the results of placebo tests whereby outcomes
that could not be affected by the RD intervention are used as dependent variables. Because our cutoff is by
construction exogenous, we also dispense with diagnostic tests such as the examination of the density of
Age in the vicinity of the discontinuity (McCrary 2008).
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Table 3 Comparison between local linear regression estimates and experimental benchmarks, with different bandwidth selection algorithms

Benchmark RD, local linear regression

(1a) (1b) (1c) (1d)
Cross-validated bandwidth,

based on 10% of sample (h 5 2.5)
Cross-validated bandwidth, based

on 50% of sample (h 5 5.3)
Optimal bandwidth

(h 5 11.7)

Neighbors treatment

(robust SE)
9.65**
(0.75)

10.43**
(0.97)

10.26**
(0.99)

10.0**
(1.11)

14.75**
(6.65)

6.44
(4.47)

9.41**
(3.03)

Age 0.13**
(0.023)

0.039**
(0.036)

0.45**
(0.0026)

2.66
(2.02)

20.73
(0.63)

0.096
(0.194)

Age2 20.0054**
(0.0012)

0.0016
(0.0014)

20.0058**
(0.0026)

Age3 20.00054**
(0.000059)

20.00072**
(0.000083)

Age4 0.0000097**
(0.0000028)

Age � Neighbors 20.051
(0.057)

20.0055
(0.09)

20.032
(0.11)

20.82
(2.20)

1.21*
(0.69)

0.252
(0.213)

Age2 � Neighbors 20.0031
(0.0028)

20.0014
(0.0035)

0.0016
(0.0065)

Age3 � Neighbors 20.000084
(0.00015)

20.000016
(0.00021)

Age4 � Neighbors 20.0000040
(0.0000071)

N (unweighted) 30,038 30,038 30,038 30,038 14,717 14,717 14,717
N with weights > 0 30,038 30,038 30,038 30,038 1844 4053 7796
Squared error 22.56 12.67 0.35
MSE 66.78 32.65 9.53

Dependent variable is voter turnout. Age has been centered so that it is zero at the point of discontinuity (55 years). Table entries are weighted least squares regression estimates and

robust SEs. Squared error is the square difference between the estimates in columns 2a–d and the benchmark estimate of 10.0. MSE is mean squared error, defined as squared error plus

the square of the SE. The local linear regression specifications are given in equation (3) in the text. The first two columns present results using bandwidths selected by cross-validation;

the last column presents results using the bandwidth calculated by the Imbens-Kalyanaraman method. The bandwidth on each side of the cutoff is given by h, in years of age. An h of 2.5

means that the sample encompasses those age 52.5–57.5.

*p < .10, **p < .05 (two-tailed test).
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was obviously a poor criterion, although doubtless a tempting one in actual practice. The
more systematic procedures associated with local linear regression seem to recommend
that approach, especially when the bandwidth size is determined using the Imbens-Kalya-
naraman algorithm.

In the simulated example considered above, local regression using optimal bandwidth
performs well, but this method is not foolproof. Table 4 traces the success with which this
RD method recovers the experimental benchmark when the simulated age cutoff is placed
at age 40, 50, 60, and 70. In two of the simulations, local linear regression with optimal
bandwidth successfully recovers the benchmark. But in two others, RD misses the bench-
mark rather badly. In one of the four simulations, the confidence interval that surrounds the
RD estimate does not include the benchmark; the 95% interval surrounding the RD esti-
mate based on a discontinuity at age 60 extends from 21.9 to 8.5, but the experimental
benchmark is located at 9.9. Looking back on Fig. 1, we see that the relationship between
age and turnout is curvilinear near age 60, causing the local linear regression to break
down. One could estimate more complex local regression models instead of the linear
model used here, but again, this introduces an additional layer of specification uncertainty.
Adding covariates (dummy variables indicating whether each person voted in the previous
five elections) does nothing to improve the estimate: the estimated effect is 2.5 with a robust
SE of 2.6. Bear in mind that the analyst looking at results akin to those presented in Table 4
will not have the luxury of knowing the experimental benchmark and could easily interpret
these results to mean that the RD estimate and SE are robust and trustworthy.

Although RD analysis represents an attractive alternative to experiments, one should not
lose sight of the fundamental difference between them, a difference that is obscured by
reporting conventions. The typical RD analysis reports SEs that account solely for sam-
pling variability. As Gerber, Green, and Kaplan (2004) argue, however, observational ap-
proaches such as RD analysis generate estimates whose mean squared error is a function of
both sampling variability and specification uncertainty. Experimental and RD estimates
may be reported as having the same SEs, but the experimental estimates in such cases
have smaller effective SEs because they involve less specification uncertainty.
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Fig. 3 Local linear regression estimates and confidence intervals, by bandwidth. The graph shows
local linear regression estimates of the treatment effect, using various age bandwidths between 0.5
and 20 years. Dotted lines denote 95% CIs. The horizontal dashed line denotes the experimental
benchmark estimate from Table 1, column d (b̂1 5 10.0). The vertical line denotes the Imbens-
Kalyanaraman estimate of optimal bandwidth.
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Table 4 Comparison between experimental benchmarks and local regression estimates using optimal bandwidth, for various simulated age thresholds

Location of simulated age discontinuity

40 50 60 70

Benchmark RD Benchmark RD Benchmark RD Benchmark RD

Neighbors
treatment
(robust SE)

10.68** (1.42) 9.82** (3.85) 10.20** (1.04) 8.08** (2.56) 9.88** (1.22) 3.30 (2.65) 9.63** (1.37) 15.96** (3.85)

Bandwidth (h) 11.97 15.24 15.78 13.10
N (unweighted) 30,038 8419 30,038 10,727 30,038 8031 30,038 4660
N with weights >0 4163 5822 4340 2398
Squared error 0.74 4.49 43.30 40.07
MSE 15.56 11.04 50.32 54.89

Note.Benchmark estimates are based on a fourth-order polynomial regression, as in equation (2) in the text. The local linear regression specifications are given in equation (3) in the text.

Squared error is the squared difference between the RD estimates and the corresponding benchmark estimates. MSE is mean squared error, defined as squared error plus the square of the

SE of each of the RD estimates.

4
1
5



The challenge for researchers is to reduce this specification uncertainty by building
a knowledge base from empirical applications of RD that in turn facilitates the automation
of specification and bandwidth selection. Voter mobilization work is ideal for this type of
exercise because it involves large samples, frequent use of random assignment, and dis-
continuities that arise in the ordinary course of political consulting work. But in truth, many
data sets are suitable for this type of benchmark exercise, and it is important to canvass
a wide array of different applications to assess the conditions under which RD generates
reliable estimates.

It should be stressed that benchmarking is also possible using data sets where no in-
tervention has occurred. In the absence of an intervention, the true treatment effect is by
construction zero everywhere, obviating the need to estimate a benchmark near the vicinity
of the discontinuity. This type of data set may be used to simulate a series of RD analyses
with an array of different forcing variables and thresholds. Research questions include (1)
the correspondence between the empirical sampling distribution of the RD estimates that
emerge from a given estimation procedure (presumably centered around zero) and the sam-
pling distribution implied by the estimated SEs associated with the treatment effect, (2) the
relative performance of models that include more/less flexible control functions and wider/
narrower bandwidths, and (3) the degree to which diagnostic tools successfully guide the
specification of RD models and bandwidths.

By comparing RD estimates to experimental benchmarks, social scientists aim to de-
velop and refine a set of standard operating procedures that can be used reliably when
researchers proceed without experimental benchmarks. There is no telling whether the
experience acquired through this approach will succeed in generating a useful set of stan-
dard procedures, but this line of exploration is nevertheless worth pursuing even at the risk
of failure. Researchers currently lack a clear sense of how to gauge the reliability of RD
estimates, and the proper quantification of uncertainty is an essential aspect of scientific
inquiry.
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