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Randomized experiments commonly compare subjects receiving a treatment to subjects

receiving a placebo. An alternative design, frequently used in field experimentation,

compares subjects assigned to an untreated baseline group to subjects assigned to

a treatment group, adjusting statistically for the fact that some members of the treatment

group may fail to receive the treatment. This article shows the potential advantages of

a three-group design (baseline, placebo, and treatment). We present a maximum

likelihood estimator of the treatment effect for this three-group design and illustrate its

use with a field experiment that gauges the effect of prerecorded phone calls on voter

turnout. The three-group design offers efficiency advantages over two-group designs

while at the same time guarding against unanticipated placebo effects (which would

undermine the placebo-treatment comparison) and unexpectedly low rates of compli-

ance with the treatment assignment (which would undermine the baseline-treatment

comparison).
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1 Introduction

Administering a treatment to randomly assigned individuals presents a range of
practical problems. Subjects may be unwilling to participate in a study or unavail-
able to receive the treatment when it is administered. More generally, they some-
times ‘‘cross over’’ from one experimental condition to the other and take the
treatment when assigned to the control group or vice versa. In the end, the treatment
to which subjects were randomly assigned may differ from the treatment that sub-
jects actually receive. The problem of noncompliance with treatment assignment has
received extensive attention in the statistical literature (e.g., Efron and Feldman
1991; Imbens and Angrist 1994; Angrist et al. 1996; Imbens and Rubin 1997; Frangakis
and Rubin 2002; Cheng and Small 2006). One fundamental insight has been the value
of the placebo-controlled experimental design (Boruch 1997, chap. 9; Nickerson 2005).
In this design, subjects who agree to participate in a study and for whom the prospect
of treatment is imminent are randomly assigned to receive either the treatment or the
placebo. For example, Nickerson (2008) orchestrated a canvassing campaign in which
registered voters were either encouraged to vote (the treatment) or to recycle (the pla-
cebo). In principle, the comparison of those who receive the treatment with those who
receive the placebo minimizes problems of noncompliance and enables the researcher
to draw unbiased and relatively efficient inferences about the causal effect of the treat-
ment on the treated.

The use of such placebo-treatment designs, however, has several potential disadvantages.
First, administering a placebo can be costly. Resources devoted to recruit subjects and se-
cure their compliance must be divided between the treatment and the placebo arms of the
experiment. Second, special care must be taken to ensure that the treatment and placebo are
administered in ways that preserve the comparability of the groups. Finally, placebo-treat-
ment designs do not allow researchers to detect any unexpected effects of the placebo itself.

An alternative design involves a comparison between a randomly assigned control
group, which receives no intervention of any kind, and a randomly assigned treatment
group, some fraction of which complies with the treatment assignment and is actually
treated. For example, from a population of N individuals, one might select NT subjects at
random and attempt to treat them, leaving N 2 NT subjects in an untreated baseline group.
Under certain assumptions that will be detailed below, this approach enables the researcher
to consistently estimate the average treatment effect for those who actually receive the
treatment. Whereas the placebo-treatment design compares those who receive the treat-
ment with those who receive the placebo, the baseline-treatment design compares those
assigned to the treatment group with those assigned to the baseline group, adjusting for
noncompliance. Useful estimates may be generated using either approach. But the
baseline-treatment design, too, has risks. If the compliance rate is low, the experiment
may lack the power to detect a treatment effect. In extreme cases, compliance may be
so low as to lead to substantial finite sample bias even with huge samples (Bound
et al. 1995; Imbens and Rosenbaum 2005; Morgan and Winship 2007, 197–200; Angrist
and Pischke 2009, 205–216).

The aim of this article is to show how these two designs can be combined to produce
more accurate treatment effect estimates. We consider the case in which subjects are ran-
domly assigned to three groups—an untreated baseline group, a placebo group, and a treat-
ment group (Rosenthal 1985). After explicating the identifying assumptions underlying
this approach using the Rubin Causal Model (Rubin 1974, 1977, 1978; Holland 1986),
we derive a maximum likelihood (ML) estimator for the three-group design. Prior
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statistical work has analyzed the relative merits of the placebo-treatment and baseline-
treatment designs but has not discussed the advantages of the three-group design over these
more conventional two-group designs.1

Of special interest is the advantage of the three-group design over the placebo-treatment
design. There are many situations in which researchers conduct placebo-controlled experi-
ments using samples that are drawn from large populations for which experimental out-
comes can be measured at little or no additional cost. Examples include field experiments
in which outcome data, such as voter turnout, mortgage loans, campaign contributions,
crime rates, or mortality, are routinely supplied at low cost by public agencies. A researcher
studying these outcomes using a placebo-treatment design would find it virtually costless
to measure outcomes for an untreated baseline group as well. The purpose of this article is
to derive an estimator for the three-group design and to lay out the conditions under which
it provides improved statistical precision.

The article is organized as follows. We begin by deriving the three-group estimator
within the potential outcomes framework for causal inference, building on previous work
on randomized experiments with noncompliance (e.g., Imbens and Angrist 1994; Angrist
et al. 1996). Next, we show how to implement the estimator using ML. We then illustrate its
use with a field experiment. The study, which tests whether prerecorded phone calls in-
crease voter turnout, shows the advantages of the three-group design in terms of added
precision. We also present a small simulation that illuminates the conditions under which
researchers might want to use a three-group design instead of the placebo-treatment design.
These results also address the question of optimal allocation of resources when baseline
observations are free and placebo and treatment observations are equally costly. We con-
clude by discussing other advantages of the three-group design beyond its increased pre-
cision, such as its ability to guard against unanticipated placebo effects (which would
undermine the placebo-treatment comparison) and unexpectedly low rates of compliance
with the treatment (which would undermine the baseline-treatment comparison).

2 Treatment Effect Estimation with Noncompliance

Suppose that we are interested in the effect of a binary treatment D 2 {0, 1} on some
outcome Y. In the literature on voter mobilization, D 5 1 represents an encouragement
to participate in the upcoming election and Y is observed turnout in that election. As
in Rubin (1974, 1977, 1978), we define Y1i and Y0i as the potential outcomes that individual
i would have with and without being exposed to the treatment. In the voter mobilization
example, Y1i represents i’s potential turnout after being encouraged to vote, whereas Y0i

represents i’s potential turnout after not being encouraged to vote. The ‘‘fundamental prob-
lem of causal inference’’ (Holland 1986) is that we cannot observe both potential outcomes

1The problem considered here is similar but not identical to that encountered in three-arm trials with noncom-
pliance (see, e.g., Cheng and Small 2006). Three-arm trials generally compare two active treatments to a control
condition and to each other. Although the three-group design proposed here also has three treatment arms (base-
line, placebo, and treatment), it invokes a different set of identifying assumptions. In classical three-arm trials,
researchers are interested in estimating the effects of two treatments, whereas we are only interested in estimating
the effect of a single treatment; the placebo group is solely used to allow for more efficient treatment effect
estimates. Also note that there is a subtle yet important difference between the placebo effect considered here
and placebo effects in clinical trials. In clinical trials, the placebo effect is the psychological effect of admin-
istering biologically inactive substances or procedures (see de Craen et al. 1999). Here, however, the placebo
effect is the effect of administering a second treatment that we assume to have no effect on the outcome of interest,
but which might very well have an effect on other outcomes. For example, an appeal to recycle, the placebo
treatment used in Nickerson 2008, is assumed to not affect voter turnout but might very well affect recycling
behavior and environmental awareness more generally.
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Y1i and Y0i; we only observe Yi 5 Di�Y1i 1 (1 2 Di)�Y0i. Since one of the two potential
outcomes is always counterfactual, we cannot compute the individual-level treatment ef-
fect, Y1i 2 Y0i. Instead, we might want to estimate the average treatment effect, E[Y1 2 Y0],
or the average treatment effect on the treated, E[Y1 2 Y0jD 5 1].

Individuals do not always comply with their treatment assignment. Individuals assigned to
receive a reminder to vote, for example, might not be contactable. Instrumental variable meth-
ods can be used to estimate treatment effects in randomized experiments with such noncom-
pliance. Let Zi 2 {0, 1} denote the treatment assigned to i and Di the treatment actually
received by i. Because of noncompliance the assigned treatment, Zi, does not necessarily
equal the received treatment, Di. We follow Imbens and Angrist (1994) in conceptualizing
the identification of treatment effects in terms of potential treatment indicators. Let Dzi

represent i’s potential treatment status given Zi 5 z. For example, D1i 5 1 and D0i 5

0 means that i would take the treatment when assigned to it but would not take the treatment
when not assigned to it. The treatment status indicator can then be expressed as Di 5 Zi�D1i

1 (1 2 Zi)�D0i. We only observe Z and D (and therefore Dz for individuals with Z 5 z) but
never both potential treatment indicators for the same individual. Following the terminol-
ogy in Angrist et al. (1996), we divide the population into four types defined by their po-
tential treatment indicators D1 and D0: compliers (D0 5 0 and D1 5 1), always-takers (D1

5 D0 5 1), never-takers (D1 5 D0 5 0), and defiers (D0 5 1 and D1 5 0). Since we only
observe one of the two potential treatment indicators, we cannot directly infer the type of
any particular individual without imposing further restrictions.

Let Yzdi represent the potential outcome that i would obtain if Zi 5 z and Di 5 d. With
a binary instrument Zi and binary treatment Di, the potential outcomes are Y00i, Y01i, Y10i,
and Y11i.

2 In the voter mobilization example, Y10i, for instance, represents i’s potential
turnout if she were assigned to receive a reminder but did not receive it.

Under the following assumptions, average treatment effects are nonparametrically iden-
tified for the subpopulation of compliers (Angrist et al. 1996; Abadie 2003):3

(i) Ignorability of the instrument: the random vector (Y00, Y01, Y10, Y11, D0, D1) is in-
dependent of Z.

(ii) Exclusion of the instrument: P(Y0d 5 Y1d) 5 1 for d 2 {0, 1}.

(iii) First-stage effect: P(D1 5 1) > P(D0 5 1).

(iv) Monotonicity: P(D1 > D0) 5 1.

Assumption (i) is automatically satisfied in a randomized experiment because of random
assignment of Z. Assumption (ii) asserts that variation in the instrument does not change
potential outcomes other than through D and therefore allows us to define potential out-
comes in terms of D alone: Y0 5 Y00 5 Y10 and Y1 5 Y01 5 Y11.4 Together, assumptions (i)
and (ii) guarantee that the only effect of the instrument on the outcome is through the
variation it induces in the treatment status. The first-stage effect assumption (iii) requires
that treatment assignment, Z, affects the actual treatment received, D. The strength of the
observed relationship between Z and D is easy to assess empirically. Assumption (iv) rules

2Implicit in this notation is the Stable Unit Treatment Value Assumption (SUTVA) (Rubin 1990), which requires
that no individual is affected by the treatment assigned to and received by other individuals.

3We suppress the individual-specific index i to simplify the notation in this section.
4In the voter mobilization example, this exclusion restriction implies that turnout after not getting a reminder when
being assigned to not get a reminder, Y00, is the same as turnout after not getting a reminder when being assigned
to get a reminder, Y10. It also implies that turnout after getting a reminder when being assigned to not get a re-
minder, Y01, is the same as turnout after getting a reminder when being assigned to get a reminder, Y11.
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out the existence of defiers and defines a partition of the population into always-takers,
compliers, and never-takers.

Given these assumptions, the Wald estimator identifies average treatment effects for
compliers, also called local average treatment effects by Imbens and Angrist (1994). Fol-
lowing Angrist et al. (1996, 445),

sLATE 5
covðY; ZÞ
covðD; ZÞ5

E½YjZ5 1�2E½YjZ5 0�
E½DjZ5 1�2E½DjZ5 0�5E½Y12Y0jD1>D0�: ð1Þ

With three treatments, D 2 {0, 1, 2}, and three treatment assignments, Z 2 {0, 1, 2}, the
number of types increases to 335 27 (Imbens 2007). Now, 0 corresponds to the baseline, 1 is
the placebo, and 2 is the active (here: voter mobilization) treatment. In contrast to the binary
instrument/binary treatment case considered before, the set of types T is now equal to T2{(0,
0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 0), (0, 1, 1), (0, 1, 2), . . ., (1, 0, 0), . . ., (2, 2, 2)}. In consequence,
the characterization of compliers and noncompliers is no longer as straightforward. For ex-
ample, T5 (0, 0, 0) is a never-taker who takes the baseline when assigned to the baseline (D0

5 0), the placebo (D1 5 0), or the treatment (D2 5 0). T 5 (0, 1, 0) is a partial complier who
takes the baseline when assigned to the baseline (D0 5 0) and takes the placebo when as-
signed to the placebo (D151) but takes the baselinewhen assigned to the treatment (D250).

We make the following six identifying assumptions. The first three assumptions parallel
assumptions (i) to (iii) made before in the case of binary instruments and binary treatments.
The last three assumptions are derived from the particular structure of the three-group design.

(a) Ignorability of the instrument: the random vector (Y00, Y01, Y02, Y10, Y11, Y12, Y20,
Y21, Y22, D0, D1, D2) is independent of Z.

(b) Exclusion of the instrument: P(Y0d 5 Y1d 5 Y2d) 5 1 for d 2 {0, 1, 2}.

(c) First stage: P(Dz 5 z) > P(D:z 5 z) for z 2 {0, 1, 2}.

(d) No baseline crossover: P(D0 6¼ 0) 5 0.

(e) Limited crossover: P(D1 6¼ 2) 5 P(D2 6¼ 1) 5 1.

(f) Perfect blindness: P(D1 6¼ 1jD2 5 2) 5 P(D2 6¼ 2jD1 5 1) 5 0.

Assumption (d) requires that all individuals assigned to the baseline group comply with
their treatment assignment. This assumption is often plausible since individuals assigned to
the baseline group normally cannot receive the placebo or the treatment. The ‘‘no baseline
crossover’’ assumption rules out all types with D0 6¼ 0 such as T 5 (2, 0, 0) or T 5 (1, 1, 1)
and reduces the number of possible types to 9. It would be violated if members of the
baseline group had access to the placebo or the treatment, perhaps because of another ex-
periment that made the placebo or the treatment available to these individuals.

Assumption (e) prohibits crossover between the placebo and the treatment groups. This
assumption is also plausible in the context of many three-group experiments since indi-
viduals generally cannot receive the treatment when assigned to the placebo or the placebo
when assigned to the treatment. The limited crossover assumption rules out T 2 {(0, 2, 0),
(0, 2, 1), (0, 2, 2), (0, 0, 1), (0, 1, 1)}. We are thus left with four types of individuals: T 2 {(0,
0, 0), (0, 1, 0), (0, 0, 2), (0, 1, 2)}. T 5 (0, 0, 0) characterizes individuals who always take
the baseline. T 5 (0, 1, 0) characterizes individuals who take the baseline when assigned to
the baseline or the treatment but take the placebo when assigned to the placebo. T 5 (0, 0,
2) characterizes individuals who take the baseline when assigned to the baseline or the
placebo but take the treatment when assigned to the treatment. Finally, T 5 (0, 1, 2) denotes
individuals who always comply with their experimental assignment. They take the baseline
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when assigned to the baseline, take the placebo when assigned to the placebo, and take the
treatment when assigned to the treatment.

Assumption (f) asserts that compliance does not vary with treatment assignment. Perfect
blindness (see Efron and Feldman 1991) rules out the existence of partial compliers who
comply with their assignment when assigned to the placebo (D1 5 1) but fail to comply
with their assignment when assigned to the treatment (D2 6¼ 2) or vice versa (D1 6¼ 1 and
D2 5 2). In the voter mobilization field experiment we consider below, perfect blindness is
satisfied because individuals do not know whether the phone call they are about to receive
contains the placebo or the treatment. Since compliance is defined as simply answering the
call, an individual who would comply with the placebo would also comply with the treat-
ment and vice versa. Perfect blindness allows us to eliminate both partial compliers (T 5

(0, 1, 0) and T 5 (0, 0, 2)). We are thus left with only two types of individuals: never-takers
(T 5 (0, 0, 0)) and compliers (T 5 (0, 1, 2)).

The perfectblindness assumptioncan beassessedempirically. It implies that inexpectation,
the proportion of individuals who receive the placebo in the placebo group equals the propor-
tion of individuals who receive the treatment in the treatment group. Moreover, it also implies
that in expectation, the covariate distribution for individuals who receive the placebo is the
same as the covariate distribution for individuals who receive the treatment. Whether the per-
fect blindness assumption is satisfied inpractice depends on theway in which the experiment is
designed and executed. Invoter mobilization field experiments, for example, perfect blindness
wouldbe lessplausible ifcallersemployeddifferentscriptsondifferentdays. Althoughsuchan
experimental protocol might be easier to implement, it raises the question of whether com-
pliance varies with treatment assignment. If there were systematic differences between the
types of voters who respond to calls on particular days of the week, the perfect blindness as-
sumption would be violated, resulting in potential bias in treatment effect estimates.

As shown in Table 1, it is straightforward to infer the population shares of never-takers
and compliers given assumptions (a)–(f). Consider individuals with (Zi, Di) 5 (0, 0). Such
individuals can be either never-takers or compliers. We cannot infer the type of these in-
dividuals from the observed data. However, now consider individuals with (Zi, Di) 5 (2, 0).
Such individuals can only be never-takers. The same is true for individuals with (Zi, Di) 5
(1, 0). Individuals with (Zi, Di) 5 (1, 1) or (Zi, Di) 5 (2, 2) in contrast must be compliers.
We can derive the population shares of never-takers and compliers by considering the sub-
population with Zi 5 2. Within this subpopulation, we observe Di 5 0 only for never-takers
and Di 5 2 only for compliers. Hence, the population share of never-takers is equal to P(Di

5 0jZi 5 2) and the population share of compliers is equal to P(Di 5 2jZi 5 2).5

Table 1 Type by observed variables

Received treatment

Assigned treatment

Baseline (Zi 5 0) Placebo (Zi 5 1) Treatment (Zi 5 2)

None (Di 5 0) (0, 0, 0), (0, 1, 2) (0, 0, 0) (0, 0, 0)
Placebo (Di 5 1) (0, 1, 2)
Treatment (Di 5 2) (0, 1, 2)

5Equivalently, one can derive the population shares of never-takers and compliers by considering the subpopu-
lation with Zi 5 1. Within this subpopulation, we observe Di 5 0 only for never-takers and Di 5 1 only for
compliers.
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These population shares for never-takers and compliers allow us to infer outcome dis-
tributions for compliers under baseline, placebo, and treatment. We can directly infer the
distribution of Yi(Di 5 2, Ti 5 (0, 1, 2)), that is, the distribution of outcomes for compliers
who receive the treatment, from the subpopulation with (Zi, Di) 5 (2, 2) since all these
individuals are known to be compliers. The same is true for the distribution of Yi(Di 5 1,
Ti 5 (0, 1, 2)), which we can infer from the subpopulation with (Zi, Di) 5 (1, 1). We can
also infer the distribution of Yi(Di 5 0, Ti 5 (0, 0, 0)) from the subpopulation with (Zi, Di)5
(2, 0) since all these individuals are known to be never-takers. Finally, we use the distri-
bution of Yi(Zi 5 0, Di 5 0). This is a mixture of the distribution Yi(Di 5 0, Ti 5 (0, 1, 2)) for
compliers and Yi(Di 5 0, Ti 5 (0, 0, 0)) for never-takers with mixture probabilities equal to
their population shares. Since we already inferred the population shares of never-takers and
compliers as well as the distribution of Yi(Di 5 0, Ti 5 (0, 0, 0)), we can obtain the dis-
tribution of Yi(Di 5 0, Ti 5 (0, 1, 2)).

Average differences between pairs of these three outcome distributions can be inter-
preted as average treatment effects on the treated.6 sbp 5 E[Yi(Di 5 1, Ti 5 (0, 1, 2))
2 Yi(Di 5 0, Ti 5 (0, 1, 2))] is the effect of the placebo for individuals who received
the placebo instead of the baseline. sbt 5 E[Yi(Di 5 2, Ti 5 (0, 1, 2)) 2 Yi(Di 5 0,
Ti 5 (0, 1, 2))] is the effect of the treatment for individuals who received the treatment
instead of the baseline. spt 5 E[Yi(Di 5 2, Ti 5 (0, 1, 2)) 2 Yi(Di 5 1, Ti 5 (0, 1, 2))] is the
effect of the treatment for individuals who received the treatment instead of the placebo.

Both the placebo-treatment design and the three-group design rest on the assumption
that the effect of the placebo on the outcome of interest is zero, that is, sbp 5 0. This as-
sumption distinguishes the use of these designs in field research with noncompliance from
the use of placebo-controlled experiments in other contexts such as research in the life
sciences, where placebos are used to control for the psychological effects of therapeutic
attention (Rosenthal 1985; de Craen et al. 1999; Torgerson and Torgerson 2008). If sbp 6¼ 0,
the placebo has an effect on the outcome and spt and sbt differ.7

What happens if assumptions (a)–(e) hold but perfect blindness is implausible? Without
perfect blindness, we cannot eliminate the partial compliers (Ti 5 (0, 1, 0) and Ti 5 (0, 0,
2)) and are left with four types of individuals: compliers, never-takers, and two types of
partial compliers. One of them complies with the placebo but not the treatment; the other
complies with the treatment but not the placebo. Table 2 shows the result. Since each non-
empty cell now contains a mixture of at least two types, we can no longer disentangle the
mixture probabilities of the four types.

Even without perfect blindness, we can make some progress by analyzing the data as
if individuals had only been assigned to the baseline or the treatment. In other words, we
drop all individuals assigned to the placebo, so now Di 2 {0, 2} and Zi 2 {0, 2}. This
removes partial compliers who would only comply with the placebo but not the treatment
(Ti 5 (0, 1, 0)) by turning them into never-takers (Ti 5 (0, 0)). It also removes partial
compliers who would only comply with the treatment but not the placebo (Ti 5 (0, 0, 2))

6Instrumental variable methods generally only identify average treatment effects for compliers (Angrist et al.
1996). Here, in the absence of types other than never-takers and compliers, complier average treatment effects
can be interpreted as average treatment effects on the treated since every treated individual must be a complier.

7Researchers can test for the existence of a placebo effect by using the baseline-placebo comparison. Unless sbp is
assumed to be zero (or a known constant), the three-group estimator will not provide any leverage in estimating
the treatment effect beyond that afforded by the baseline-treatment estimator. Ex ante, the three-group estimator
is subject to two sources of uncertainty, statistical uncertainty arising from sampling variability and modeling
uncertainty associated with the assumed absence of a placebo effect as well as assumptions (a)–(f) (see Gerber
et al. 2004).
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by turning them into compliers (Ti 5 (0, 2)). We are thus left with never-takers and com-
pliers and the average effect of the treatment on the treated is again identified: sbt 5 E[Yi(Di

5 2, Ti 5 (0, 2)) 2 Yi(Di 5 0, Ti 5 (0, 2))]. Alternatively, we can drop individuals assigned
to the treatment, which yields sbp 5 E[Yi(Di 5 1, Ti 5 (0, 1)) 2 Yi(Di 5 0, Ti 5 (0, 1))], the
effect of the placebo for individuals who received the placebo. Even without the perfect
blindness assumption, sbp and sbt are still identified. Not identified, however, is spt, the
average effect of receiving the treatment instead of the placebo for compliers. To identify
average treatment effects on the treated in placebo-treatment experiments and three-group
experiments, both of which rely on identification of spt, perfect blindness has to hold. In
what follows, we assume that perfect blindness holds and present empirical evidence that
supports the validity of this assumption.

3 Estimators

We first derive estimators for spt and sbt and then introduce a ML estimator for the effect of
the treatment on the treated that achieves improved efficiency by combining these two
estimators.

3.1 Placebo-Treatment Comparison

As shown above, spt 5 E[Yi(Di 5 2, Ti 5 (0, 1, 2)) 2 Yi(Di 5 1, Ti 5 (0, 1, 2))] is the effect
of the treatment for individuals who received the treatment instead of the placebo. Given
assumptions (a)–(f), we can directly identify these two outcome distributions; we therefore
have the following:

spt 5E
�
Yi
�
Di 5 2; Ti 5

�
0; 1; 2

��
2Yi

�
Di 5 1; Ti 5

�
0; 1; 2

���
ð2Þ

5E½YiðZi 5 2;Di 5 2Þ�2E½YiðZi 5 1;Di 5 1Þ�; ð3Þ

with sample analog

cspt 5
PN

i5 1 Y � 1fZi 5 2;Di 5 2gPN
i5 1 1fZi 5 2;Di 5 2g

2

PN
i5 1 Y � 1fZi 5 1;Di 5 1gPN
i5 1 1fZi 5 1;Di 5 1g

; ð4Þ

where 1{�} is the indicator function. The first term on the right-hand side of equation (4)
is the proportion of voters in the group receiving the treatment; the second term on the
right-hand side of equation (4) is the proportion of voters in the group receiving the
placebo.

Table 2 Type by observed variables without perfect blindness

Received treatment

Assigned treatment

Baseline (Zi 5 0) Placebo (Zi 5 1) Treatment (Zi 5 2)

None (Di 5 0) (0, 0, 0), (0, 1, 2),
(0, 1, 0), (0, 0, 2)

(0, 0, 0), (0, 0, 2) (0, 0, 0), (0, 1, 0)

Placebo (Di 5 1) (0, 1, 2), (0, 1, 0)
Treatment (Di 5 2) (0, 1, 2), (0, 0, 2)
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3.2 Baseline-Treatment Comparison

As shown above, sbt 5 E[Yi(Di 5 2, Ti 5 (0, 1, 2)) 2 Yi(Di 5 0, Ti 5 (0, 1, 2))] is the effect
of the treatment for individuals who received the treatment instead of the baseline. We can
directly observe the first outcome distribution; the second we can infer using the mixture
probabilities. Recall that the population share of never-takers is equal to P(Di 5 0jZi 5 2)
and the population share of compliers is equal to P(Di 5 2jZi 5 2). We can write the con-
ditional distribution of Yi(Zi 5 0, Di 5 0) (the top left cell in Table 1) as a mixture of two
distributions with known mixture probabilities:

YiðZi 5 0;Di 5 0Þ5 YiðDi 5 0; Ti 5 ð0; 1; 2ÞÞ � PðDi 5 2jZi 5 2Þ
1YiðDi 5 0; Ti 5 ð0; 0; 0ÞÞ � PðDi 5 0jZi 5 2Þ;

ð5Þ

the distribution of the outcome under baseline for compliers multiplied by the population
share of compliers and the distribution of the outcome under baseline for never-takers mul-
tiplied by the population share of never-takers. This implies that the outcome distribution
for compliers under baseline is equal to

YiðDi 5 0; Ti 5 ð0; 1; 2ÞÞ5

YiðZi 5 0;Di 5 0Þ2YiðDi 5 0; Ti 5 ð0; 0; 0ÞÞ � PðDi 5 0jZi 5 2Þ
PðDi 5 2jZi 5 2Þ :

ð6Þ

We can then write the effect of the treatment for individuals who received the treatment
instead of the baseline as

sbt 5E½YiðDi 5 2; Ti 5 ð0; 1; 2ÞÞ2YiðDi 5 0; Ti 5 ð0; 1; 2ÞÞ� ð7Þ

5E

�
YiðDi 5 2; Ti 5 ð0; 1; 2ÞÞ

2
YiðZi 5 0;Di 5 0Þ2YiðDi 5 0; Ti 5 ð0; 0; 0ÞÞ � PðDi 5 0jZi 5 2Þ

PðDi 5 2jZi 5 2Þ

� ð8Þ

5E

�
YiðZi 5 2;Di 5 2Þ2YiðZi 5 0;Di 5 0Þ2YiðZi 5 2;Di 5 0Þ � PðDi 5 0jZi 5 2Þ

PðDi 5 2jZi 5 2Þ

�
:

ð9Þ

The last equality is true because we can infer Yi(Di 5 2, Ti 5 (0, 1, 2)) from the sub-
population with (Zi, Di) 5 (2, 2) and Yi(Di 5 0, Ti 5 (0, 0, 0)) from the subpopulation with
(Zi, Di) 5 (2, 0) since all these individuals are known to be compliers and never-takers,
respectively. The sample analog of the expectation in equation (9) is

csbt 5
PN

i5 1 Y � 1fZi 5 2;Di 5 2gPN
i5 1 1fZi 5 2;Di 5 2g

2

PN

i5 1
Y�1fZi 5 0;Di 5 0gPN

i5 1
1fZi 5 0;Di 5 0g

2

PN

i5 1
Y�1fZi 5 2;Di 5 0gPN

i5 1
1fZi 5 2;Di 5 0g

�
PN

i5 1
1fZi 5 2;Di 5 0gPN

i5 1
1fZi 5 2gPN

i5 1
1fZi 5 2;Di 5 2gPN

i5 1
1fZi 5 2g

; ð10Þ
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which, after some simplification, yields the local average treatment effect estimator of
Angrist et al. (1996):

csbt 5
PN

i5 1
Y�1fZi 5 2gPN

i5 1
1fZi 5 2g

2

PN

i5 1
Y�1fZi 5 0gPN

i5 1
1fZi 5 0gPN

i5 1
1fZi 5 2;Di 5 2gPN

i5 1
1fZi 5 2g

: ð11Þ

The expression in the numerator represents the intent-to-treat effect, and the denom-
inator represents the share of compliers in the sample.

3.3 ML Estimator

As discussed above, the estimators for spt and sbt introduced in the two previous subsec-
tions asymptotically converge to the same quantity when the effect of the placebo on the
outcome of interest is zero. Here, we exploit this fact to derive a more efficient ML es-
timator of the effect of the treatment on the treated for the case of binary outcomes in the
context of a voter mobilization field experiment. The extension to continuous outcomes is
in principle straightforward.

Our empirical analysis considers a voter mobilization campaign in which canvassers
call or visit registered voters in an effort to encourage them to cast a ballot. The canvassers
attempt to contact subjects assigned to the treatment or placebo but may not be able to do
so. When contact is made, canvassers either deliver a message designed to encourage vot-
ing (the treatment) or recycling (the placebo).

The (aggregate) data generated by this field experiment are listed below. Note that these
counts are sufficient statistics for the three-group design.

� nB 5 # in baseline group,

� mB 5 # voting in baseline group,

� nCT 5 # contacted in treatment group,

� mCT 5 # voting among those contacted in treatment group,

� n
�C
T 5 # not contacted in treatment group,

� m �C
T 5 # voting among those not contacted in treatment group,

� nCP 5 # contacted in placebo group,

� mCP 5 # voting among those contacted in placebo group,

� n
�C
P 5 # not contacted in placebo group,

� m
�C
P 5 # voting among those not contacted in placebo group.

We now introduce some additional notation for the four parameters to be estimated (see
Table 3). The first parameter is, a, the share of compliers in the population, which in our
empirical application is the same as the probability of successfully contacting a voter. It is
the same across all groups. The second parameter is the probability that a voter contacted in
the treatment group, that is, a complier, votes

�
pCT

�
. The third parameter is the probability

that a voter who could not be contacted, that is, a never-taker, votes
�
p

�C
�
. It is the same

across all groups. The last parameter is the treatment effect on the treated (s), that is, the
difference in the probability of voting between a complier in the treatment group and a com-
plier in either the baseline or the placebo groups. In addition to assumptions (a)–(f), we also
assume that the placebo has no effect on turnout. We return to this assumption below.
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3.4 Log-Likelihood Function

Let log LB, log LT, and log LP denote the log-likelihoods for the baseline, treatment, and
placebo groups, respectively. The overall log-likelihood function log L is given by

logL5 log LB1log LT1log LP

5 vBlog
�
a
�
pCT2s

�
1
�
12a

�
p �C

�
1
�
nB2vB

�
log

�
12

�
a
�
pCT2s

�
1
�
12a

�
p �C

��
1vCTlog

�
apCT

�
1
�
nCT2vCT

�
log

�
a
�
12pCT

��
1v

�C
Tlog

��
12a

�
p �C

�
1
�
n
�C
T2v

�C
T

�
log

��
12a

��
12p �C

��
1vCPlog

�
a
�
pCT2s

��
1
�
nCP2vCP

�
log

�
a
�
12

�
pCT2sÞÞÞ

1v
�C
P log

��
12a

�
p �C

�
1
�
n
�C
P2v

�C
P

�
log

��
12a

��
12p �C

��
:

ð12Þ

ML estimates of the four parameters given the sufficient statistics are found by max-
imizing the function above. Of particular interest is the estimate of the treatment effect, ŝ.
The estimated covariance matrix and hence standard errors of the parameter estimates fol-
low from standard asymptotic theory (Cox and Hinkley 1974).

4 Empirical Application

A field experiment was conducted in August 2008. During the day preceding the Michigan
primary elections voters who, according to Michigan’s Qualified Voter File, had voted in
November 2004 and 2006 but not in August 2006 were randomly assigned to one of three
groups.8 Members of the treatment group (N 5 8448) were called by an automated dialing
machine that conveyed the following prerecorded message: ‘‘We are calling to remind you
to vote in tomorrow’s election. Primary elections are important, but many people forget to
vote in them. According to public records, you did vote in both November 2004 and 2006,
but you missed the 2006 August primary. Please remember to vote tomorrow, August 5th.

Table 3 Notation

Parameter Definition Description

a P(D 5 1jZ 5 1) [ P(D 5 2jZ 5 2) Contact probability in placebo group [

contact probability in treatment group
[ population share of compliers

pCT P(Y 5 1jZ 5 2, D 5 2) Probability of voting given treatment
and contact

p �C P(Y 5 1jZ 5 1, D 5 0) [ P(Y 5 1j
Z 5 2, D 5 0)

Probability of voting given no contact in
placebo group[ probability of voting
given no contact in treatment group

spt P(Y 5 1jD 5 2) 2 P(Y 5 1jD 5 1) Treatment effect in placebo-treatment
comparison

sbt P(Y 5 1jZ 5 2, D 5 2) 2 P(Y 5 1j
Z 5 0, Dz 5 Z)

Treatment effect in baseline-treatment
comparison

s [ spt [ sbt Treatment effect in three-group design

8To sidestep statistical issues associated with clustered random assignment, we focus attention solely on one-voter
households. Treatment effects are similar for two-voter households.
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Press <1> if you would like us to provide future reminders like this one. Or press <2> if
you would like your phone number removed from our list.’’ This voter mobilization treat-
ment is patterned after the ‘‘social pressure’’ mailings described by Gerber et al. (2008).

The placebo group (N 5 8357) was called at the same time and from the same location.
Following Nickerson (2008), the placebo script focused on recycling. The prerecorded
message read as follows: ‘‘We are calling to remind you of the importance of recycling.
Michigan has the lowest recycling rate for plastics and other consumer products of any
Great Lakes state, wasting energy and harming the environment. Please remember to sep-
arate your trash and recycle. Press <1> if you would like us to provide future reminders like
this one. Or press <2> if you would like your phone number removed from our list.’’

The remainder of the sample was allocated to the baseline group (N 5 304,948). No
calls were directed at this group.

The automated dialer recorded whether the call was received and how many seconds the
listener spent on the line before hanging up. No messages were left on answering machines.
We consider a successful contact to be a connection of any duration; to define contact as
successful completion of the script risks violations of the perfect blindness assumption. By
this conservative definition, 47.18% of the treatment group was contacted compared with
46.74% of the placebo group. Consistent with the perfect blindness assumption, this dif-
ference in contact rates is small and statistically insignificant (v21 5 0.314, p 5 .58). We
also compared key covariate distributions of individuals who received the placebo and
individuals who received the treatment. We used v21 tests for differences in proportions
for turnout in the 2002 general elections and the 2002 and 2004 primary elections
(p 5 .34, .46, and .95). These results support the appropriateness of the perfect blindness
assumption in our study.

Table 4 reports voter turnout rates for all three groups, measured using public records col-
lected by registrars of voters. The turnout rates in the three experimental groups are 16.98% in
the baseline group, 17.04% in the placebo group, and 17.85% in the treatment group. Turnout
in the baseline group is indistinguishable from turnout in the placebo group (p 5 .89), which
confirms that the placebo did not affect turnout. Note that among individuals assigned to
the placebo group, turnout is noticeably higher for those successfully contacted (19.25%)
than for those not contacted (15.10%). This demonstrates that compliance behavior is re-
lated to turnout. An observational study that simply compared the turnout of individuals
contacted and not contacted by a campaign could reach quite misleading conclusions about
the effectiveness of voter mobilization campaigns (see also Arceneaux et al. 2006).

Table 5 presents the ML estimates of the key parameters of interest, the most important of
which is the treatment effect on the treated. The baseline-treatment comparison (column 2)
generates an estimated treatment effect of 1.85 percentage points with a standard error of 0.89.
The placebo-treatment comparison (column 3) yields an estimated treatment effect of 2.27
percentage points with a standard error of 0.91. The gain in efficiency associated with using
the three-group design instead of the two-group designs is substantial. The three-group
estimate (column 1) is 2.18 with a standard error of 0.75. In other words, augmenting the
placebo-treatment design with a baseline group lowers the standard error from 0.91 to
0.75, an 18% reduction. To achieve a similar improvement in precision within the framework
of a placebo-treatment two-group design would have required a 47% increase in sample size.9

9The ML estimator of s can be understood as a weighted average of the two two-group estimators. We can recover
the weight, w, by solving the following equation for w: ŝ5w � ŝpt1

�
12w

�
� ŝbt. In our application, the ML

estimator gives more weight to the treatment effect estimate derived from the placebo-treatment comparison
than the estimate derived from the baseline-treatment comparison (w 5 .786).
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A v2 test can be used to assess the goodness of fit of the model to the data. Here, v23 5
0.86, p 5 .84, indicating an extremely good fit.10 Lack of fit would suggest a violation of
at least one of the identifying assumptions of the three-group estimator (such as
perfect blindness, the exclusion restriction for the instrument, or the absence of placebo
effects).

Substantively, the results presented here contrast sharply with those obtained by
prior experimental studies of prerecorded voter mobilization phone calls. Several
large-scale prior experiments found prerecorded voter mobilization calls to have neg-
ligible effects on voter turnout, and none found significant positive effects (Green and
Gerber 2008). No prior study, however, tested the effectiveness of calls that apply what
Gerber et al. (2008) term ‘‘social pressure.’’ The phone calls tested here disclosed that
voting is a matter of public record, and the results suggest that this message may be un-
usually effective.

5 Efficiency of the Three-Group Design

5.1 Simulation Results

We conducted a small simulation study that illuminates the conditions under which a three-
group design is particularly advantageous. Replacing the data from our sample in which the
proportion of compliers (the contact rate) was around 47%, we created new data sets by

Table 4 Experimental outcomes for voter mobilization study

Baseline Placebo Treatment

Whole sample
N 304,948 8357 8448
Contacted — 3906 3986
Contacted (%) — 46.74 47.18
Voted 51,766 1424 1508
Voted (%) 16.98 17.04 17.85

Contacted
Voted — 752 858
Voted (%) — 19.25 21.53

Not contacted
Voted 51,766 672 650
Voted (%) 16.98 15.10 14.57

Note. The table shows turnout in the voter mobilization study for the baseline, placebo, and treatment groups. The

first row shows sample sizes. The second and third rows show the number and proportion of individuals contacted

in each of the three experimental groups. Rows 4 and 5 show the number and proportion of individuals voting in

the 2008 Michigan primary elections. The second part of the table conditions on successful contact; it shows the

number and proportion of individuals voting in the 2008 Michigan primary elections within the subgroup of

contacted individuals. The third part of the table conditions on no contact; it shows the number and proportion of

individuals voting in the 2008 Michigan primary elections within the subgroup of individuals who were not

contacted.

10We have the following constraints: in the baseline group, there are two cells that must add to the size of the
baseline group; in the treatment and placebo groups, there are four cells each that must add to the total sizes
(contacted and vote, contacted and no vote, not contacted and vote, and not contacted and no vote). So, we have
a total of 1 1 3 1 3 5 7 degrees of freedom. Since we estimate four parameters, we end up with 7 2 4 5 3
degrees of freedom for the v2 test.
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varying the proportion of compliers from .1 to .9, holding the other three model parameters
equal to their point estimates shown in Table 5, column 1, and setting all ‘‘observed’’
counts equal to their expected values. In other words, the sample sizes for all three groups,
the turnout rates for compliers and never-takers, and the treatment effect were all held
constant, but the admixture of compliers and never-takers was systematically varied.

Figure 1 compares the standard errors for the estimated treatment effects from the
baseline-treatment, placebo-treatment, and three-group estimators as a function of the con-
tact rate (a). The first thing to note is that standard errors from the three-group design
are always smaller than standard errors from the two-group designs. In other words,

Table 5 ML estimates with standard errors in parentheses

Estimates using
baseline, placebo, and

treatment groups

Estimates using
baseline and treatment

groups

Estimates using
placebo and treatment

groups

â (contact rate) 0.4697 (0.0038) 0.4718 (0.0054) 0.4696 (0.0038)
p̂CT (probability of

voting given
treatment and
contact)

0.2153 (0.0065) 0.2153 (0.0065) 0.2153 (0.0065)

p̂
�C (probability of
voting given no
contact)

0.1487 (0.0032) 0.1457 (0.0053) 0.1483 (0.0038)

ŝ (treatment effect) 0.0218 (0.0075) 0.0185 (0.0089) 0.0227 (0.0091)
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Baseline−Treatment

Placebo−Treatment

Three−Group Design

Fig. 1 Estimated standard errors as a function of the contact rate. The graph shows standard errors
for the estimated treatment effect from the baseline-treatment, placebo-treatment, and three-group
designs as the contact rate (a) ranges from .1 to .9. All other parameters are identical to the estimates
presented in Table 5, column 1.
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the three-group design is strictly more efficient than either of the two-group designs. Al-
though this in itself is not surprising given that the three-group design enjoys a larger over-
all sample size than either two-group design, its advantage over the other designs varies
with the contact rate. For very low contact rates, standard errors from the three-group de-
sign are not much smaller than standard errors from the placebo-treatment design. For very
high contact rates, standard errors from the three-group design are not much smaller than
standard errors from the baseline-treatment design.

Figure 2 rescales the results presented in Fig. 1 to depict the relative sizes of the standard
errors from the three designs more directly. The dashed line shows the ratio of the standard
errors for the estimated treatment effects from the placebo-treatment and three-group de-
signs. The dotted line shows the ratio of the standard errors for the estimated treatment
effects from the baseline-treatment and three-group designs. The contact rate (a) still
ranges from .1 to .9. We can see that for very low contact rates, the ratio of the standard
errors from the placebo-treatment and three-group designs approaches 1, that is, standard
errors from the placebo-treatment design are only slightly larger than standard errors from
the three-group design. The ratio of the standard errors from the baseline-treatment and
three-group designs, on the other hand, increases dramatically, illustrating the advantage of
the three-group design over the baseline-treatment design when contact rates are low.
When contact rates are very high, we find the opposite result. Standard errors from the
baseline-treatment design are only slightly larger than standard errors from the three-group
design (their ratio approaches 1), whereas the advantage of the three-group design over the
placebo-treatment design becomes more pronounced. The height of the gray area below the
lower of the two curves denotes the improvement in efficiency associated with the use of
the three-group design instead of the second-best design, that is, the baseline-treatment
design for low contact rates and the placebo-treatment design for high contact rates.
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Fig. 2 Ratio of estimated standard errors as a function of the contact rate. The graph shows the ratios
of the standard errors for the estimated treatment effects from the baseline-treatment and three-group
design and the placebo-treatment and three-group design as the contact rate (a) ranges from .1 to .9.
All other parameters are identical to the estimates presented in Table 5, column 1.
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5.2 Optimal Design

To this point, we have considered the case in which a placebo-treatment design is aug-
mented by the inclusion of a baseline group; our focus has been the efficiency gains of
a three-group design. Here, we consider a different question: Suppose the baseline group
were obtained at no cost, but the researcher must pay the same cost for each additional
treatment or placebo observation. In our empirical application, for example, the baseline
group was obtained at no cost, but we paid a fixed rate for each completed phone call,
regardless of the script. In this case, how should a researcher allocate resources to max-
imize the precision with which the treatment effect is estimated?

Again using the estimates from Table 5, column 1 as the basis for our simulations, Fig. 3
shows standard errors from the three-group design as a function of the contact rate and the
proportion of subjects assigned to the treatment group (out of the fixed pool of subjects
assigned to either placebo or treatment). The proportion of subjects assigned to the treat-
ment group ranges from .4 to 1; five curves show standard errors for five different values for
the contact rate. The minimum standard error for each value of the contact rate is denoted
by an empty circle. We can see that as the contact rate increases from .1 to .5, the proportion
of subjects assigned to the treatment group that minimizes the standard error increases.
With a contact rate of .5 or higher, moving the whole placebo group into the treatment
group (which means simply using a baseline-treatment design) becomes the most efficient
design choice, at least given the parameter values on which this particular set of simula-
tions is based. Note that ex post, given the estimated proportion of compliers

�
â5 0:4697

�
and the other estimated parameters in our empirical example, it would have been slightly
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Fig. 3 Estimated standard errors as a function of the contact rate and the proportion of subjects
assigned to the treatment group. The graph shows standard errors for the estimated treatment effect
from the three-group design for five different values for the contact rate (a) as the proportion of
subjects assigned to the treatment group (out of the total number of subjects assigned to treatment and
placebo) ranges from .4 to 1. All other parameters are identical to the estimates presented in Table 5,
column 1. Empty circles denote minima.

312 Alan S. Gerber et al.

 at Y
ale U

niversity on A
ugust 20, 2010 

http://pan.oxfordjournals.org
D

ow
nloaded from

 

http://pan.oxfordjournals.org


more efficient to move the whole placebo group into the treatment group and to use
a baseline-treatment design instead. Ex ante, however, with the proportion of compliers,
the treatment effect, and the turnout rate among compliers and never-takers unknown, the
three-group design provides an insurance against situations in which two-group designs
perform extremely poorly.11

6 Discussion

Ready availability of outcome data for baseline groups offers researchers a low-cost op-
portunity to improve the efficiency of their experimental designs. Costless access to out-
come data for the baseline group increased our experiment’s effective sample size by
almost half. Studies with a larger population share of compliers can expect to make even
more valuable use of the baseline group by assigning more individuals to the treatment
group than the placebo group.

Another virtue of the three-group design is that it helps detect and correct unexpected
problems. The three-group design enables researchers to verify that the placebo has no
effect on the outcome of interest (Rosenthal 1985). If the treatment were accidentally ad-
ministered to the placebo group or if the placebo somehow affected the outcome of interest,
the placebo-treatment comparison would produce biased results. In the absence of a base-
line group, this bias would be difficult to detect empirically. Indeed, in medical research
tampering with placebo groups has sometimes become evident only decades after placebo-
treatment comparisons yielded misleading results (Silverman 1980). The three-group de-
sign enables researchers to compare the placebo and baseline groups to verify that the
placebo was ineffectual. Moreover, the three-group design is superior to a baseline-
treatment design when the population share of compliers is low. Given that researchers
are often uncertain about placebo effects, perfect blindness, and the extent of noncompli-
ance with treatment assignment, the three-group design is akin to an insurance policy. It
may not necessarily prove to be an optimal allocation of resources ex post, but ex ante it
guards against significant risks.

The class of experiments to which the three-group design might be applied is potentially
quite broad. Especially relevant are so-called ‘‘crossover designs’’ (Shadish et al. 2002,
chap. 8) in which a random sample of n observations is drawn from a population of size
N; m observations are assigned to a group that receives a treatment immediately, whereas
n 2 m observations are assigned to a group that receives the same treatment at some later
date. Outcomes are measured for all N observations prior to the administration of the treat-
ment to the second group; this group functions as a placebo group. A recent prominent
example of such a crossover design is Progresa, the Mexican program for education, health,
and nutrition (Gertler 2004).

Although crossover experiments may be attractive to participants who would otherwise
balk at participating in a study that may place them in a group that never receives the
treatment, crossover designs may nonetheless confront problems of noncompliance.
For example, n randomly selected observations might be encouraged to participate in a pro-
gram with the stipulation that the researcher will determine the period during which the
treatment is administered. Many subjects may be unavailable, uninterested, or unwilling to

11Additional simulation results for other combinations of parameter values are available in an online appendix.
These results demonstrate that even with a large population share of compliers, it is not always optimal to switch
to a baseline-treatment design, depending on the exact combination of parameter values.
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participate under these conditions. The advantage of the three-group design is that it en-
hances the efficiency of a placebo-treatment comparison and provides a means for detect-
ing placebo effects, which could arise in the context of crossover designs if subjects change
their behavior in anticipation of future treatment. Possible applications include crossover
experiments whose outcomes are readily measured for all N observations. In the social
sciences, such outcomes may be obtained from administrative records for individuals
(births, deaths, bankruptcies, convictions, and campaign contributions), organizations sub-
ject to public disclosure requirements (tax statements, board composition, and funding
sources), and political entities (budgets, policies, portfolios, and decisions). Three-group
designs are likely to become much more common as these research opportunities are
explored.
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